On Kronecker's limit formula in a totally imaginary quadratic field over a totally real algebraic number field
نویسندگان
چکیده
منابع مشابه
COMPARISON RESULTS FOR CERTAIN PERIODS OF CUSP FORMS ON GL2n OVER A TOTALLY REAL NUMBER FIELD
This article grew out of my talk in ‘The Legacy of Srinivasa Ramanujan’ conference where I spoke about some techniques to prove algebraicity results for the special values of symmetric cube L-functions attached to the Ramanujan ∆-function. If one wishes to compare these different techniques, then one needs to compare various automorphic periods attached to the symmetric cube transfer of ∆. Moti...
متن کاملClass number in totally imaginary extensions of totally real function fields
We show that, up to isomorphism, there are only finitely many totally real function fields which have any totally imaginary extension of a given ideal class number.
متن کاملPerfect Forms over Totally Real Number Fields
A rational positive-definite quadratic form is perfect if it can be reconstructed from the knowledge of its minimal nonzero value m and the finite set of integral vectors v such that f(v) = m. This concept was introduced by Voronöı and later generalized by Koecher to arbitrary number fields. One knows that up to a natural “change of variables” equivalence, there are only finitely many perfect f...
متن کاملOn 2-class field towers of imaginary quadratic number fields
For a number field k, let k1 denote its Hilbert 2-class field, and put k2 = (k1)1. We will determine all imaginary quadratic number fields k such that G = Gal(k2/k) is abelian or metacyclic, and we will give G in terms of generators and relations.
متن کاملTotally Real Integral Points on a Plane Algebraic Curve
Michel LAURENT Abstract. Let F (X,Y ) = ∑m i=0 ∑n j=0 ai,jX iY j be an absolutely irreducible polynomial in Z[X,Y ]. Suppose that m ≥ 1, n ≥ 2 and that the polynomial ∑n j=0 am,jY j is reducible in Q[Y ], has n simple roots and an unique real root. Let L be a totally real number field and let (ξ, ζ) ∈ OL ×L be such that F (ξ, ζ) = 0. We give an upper bound for the absolute height H(ξ) which dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1965
ISSN: 0025-5645
DOI: 10.2969/jmsj/01740411